Mixed integer programming with a class of nonlinear convex constraints

نویسندگان

  • Alexander Vinel
  • Pavlo A. Krokhmal
چکیده

We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second-order and p-order cone programming as special cases. We explore possible applications of some of the solution techniques that have been successfully used in mixed-integer conic programming and show how they can be generalized to the problems under consideration. Particularly, we consider branch-and-bound method based on outer polyhedral approximations, lifted nonlinear cuts, and linear disjunctive cuts. Results of numerical experiments with discrete portfolio optimization models are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient global optimality conditions for general mixed integer nonlinear programming problems

‎In this paper‎, ‎some KKT type sufficient global optimality conditions‎ ‎for general mixed integer nonlinear programming problems with‎ ‎equality and inequality constraints (MINPP) are established‎. ‎We achieve‎ ‎this by employing a Lagrange function for MINPP‎. ‎In addition‎, ‎verifiable sufficient global optimality conditions for general mixed‎ ‎integer quadratic programming problems are der...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

Comparing Mixed-Integer and Constraint Programming for the No-Wait Flow Shop Problem with Due Date Constraints

The impetus for this research was examining a flow shop problem in which tasks were expected to be successively carried out with no time interval (i.e., no wait time) between them. For this reason, they should be completed by specific dates or deadlines. In this regard, the efficiency of the models was evaluated based on makespan. To solve the NP-Hard problem, we developed two mathematical mode...

متن کامل

A generalized implicit enumeration algorithm for a class of integer nonlinear programming problems

Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...

متن کامل

Smart load shedding and distributed generation resources rescheduling to improve distribution system restoration performance

After a permanent fault occurs if it is not possible to supply the load in the network, the optimal load restoration scheme allows the system to restoration the load with the lowest exit cost, the lowest load interruption, and in the shortest possible time. This article introduces a new design called Smart Load Shedding, abbreviated SLS. In the proposed SLS scheme, the types of devices in smart...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Optimization

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017